Untukmembuang muatan kapasitor, gunakan tahanan 20.000 ohm, 2 watt, sebuah komponen yang tidak mahal dan tersedia di toko-toko elektronik. Ikatkan jepit pada tahanan ke terminal kapasitor; hal ini berarti akan membuang muatan listrik
ilustrasi oleh Kapasitor adalah komponen elektronik bersifat pasif yang dapat menyimpan muatan listrik sementara dengan satuan dari kapasitor adalah Farad. Kapasitor biasanya juga disebut dengan kondensator. Muatan listrik yang disimpan tersebut dapat disalurkan ke berbagai alat antara lain lampu flash camera, sirkuit elektronik, dan lainnya. Kapasitor dalam bidang elektronik disimbolkan dengan bentuk Konsep KapasitorRumus KapasitorRangkaian KapasitorContoh Soal dan Penyelesaian Konsep Kapasitor Konsep kapasitor termasuk dalam kelompok komponen pasif, yaitu jenis komponen yang bekerja tanpa memerlukan arus panjar. Kapasitor terdiri atas dua keping konduktor lempeng logam yang dipisahkan oleh bahan penyekat isolator. Isolator penyekat ini sering disebut sebagai bahan zat dielektrik. Zat dielektrik yang digunakan untuk menyekat kedua penghantar komponen tersebut dapat digunakan untuk membedakan jenis kapasitor. Beberapa pengertian kapasitor yang menggunakan bahan dielektrik antara lain berupa kertas, mika, plastik cairan dan lain sebagainya. Jika kedua ujung keping konduktor ini diberi tegangan listrik, maka muatan-muatan positif akan mengumpul pada salah satu kaki elektroda metalnya. Pada saat yang sama muatan-muatan negatif terkumpul pada ujung metal yang lainnya. Muatan positif tidak dapat mengalir menuju ujung kutup negatif dan sebaliknya muatan negatif tidak bisa menuju ke ujung kutup positif. Hal ini disebbakan keduanya terpisah oleh bahan dielektrik yang non-konduktif. Muatan elektrik ini akan “tersimpan” selama tidak ada konduksi pada ujung-ujung kakinya. Rumus Kapasitor 1. Besar Kapasitansi Kamu dapat mencari nilai kapasitas atau kapasitansi suatu kapasitor, yakni jumlah muatan listrik yang tersimpan. Bentuk paling umum untuk kapasitor yaitu berupa keping sejajar, persamaan kapasitansinya dinotasikan dengan C = Q / V KeteranganC = kapasitansi F, Farad 1 Farad = 1 Coulomb/VoltQ = muatan listrik CoulombV = beda potensial Volt Perlu diketahui bahwa kapasitansi tidak selalu bergantung pada nilai Q dan V. Besar kapasitansi bergantung pada ukuran, bentuk, dan posisi kedua keping serta jenis material pemisahnya insulator. Nilai usaha dapat berupa positif atau negatif tergantung arah gaya terhadap perpindahannya. Untuk jenis keping sejajar dimana keping sejajar memiliki luasan A dan dipisahkan dengan jarak d], dapat dinotasikan dengan rumus KeteranganA = luasan penampang keping m2d = jarak antar keping m = permitivitas bahan penyekat Jika antara kedua keping hanya ada udara atau vakum tidak terdapat bahan penyekat, maka nilai permitivitasnya dipakai 2. Beda Potensial Kapasitor Muatan sebelum disisipkan bahan penyekat sama dengan muatan setelah disisipkan bahan penyekat , sesuai prinsip bahwa muatan bersifat kekal. Sehingga beda potensialnya dapat dinotasikan dengan rumus berikut 3. Energi Kapasitor Kapasitor menyimpan energi dalam bentuk medan listrik. Besar energi W yang tersimpan pada dapat dicari menggunakan rumus KeteranganW = jumlah energi yang tersimpan dalam kapasitor Joule Rangkaian Kapasitor Dua kapasitor atau lebih dapat disusun secara seri maupun paralel dalam satu rangkaian listrik. Rangakian Kapasitor dibagi menjadi dua yaitu rangakain seri dan rangkaian paralel. Cara penghitungannya hampir sama dengan rangakian seri dan paralel pada resistor. Berikut ini persamaan dari rangkaian kapasitor. Rangkaian SeriRangkaian ParalelContoh Bentuk RangkaianMuatan Listrik QQs = Q1 = Q2 = Q3 Qp= Q1 + Q2 + Q3 +…Beda Potensial VVs = V1 + V2 + V3 +…Vp = V1 = V2 = V3 +…Kapasitansi CCs = 1/C1 + 1/C2 + 1/C3 +…Cp = C1 + C2 + C3 +… Contoh Soal dan Penyelesaian Contoh 1 Terdapat sebuah Kapasitor dengan mempunyai besaran kapasitas sebesar μF yang dimuati oleh sebuah Baterai berkapasitas 20 Volt. Maka berapakah Muatan yg tersimpan didalam Kapasitor tersebut ? Diketahui C = μF sama dengan 8 x 10-7 F V = 20 Volt V Ditanya Berapakah nilah Q ? Penyelesaian C = Q / V sehingga Q = C x V Q = 8 x 10-7 x 20 Q = x 10-5 coulomb Jadi jawabannya adalah x 10-5 coulomb. Contoh 2 Tiga kapasitor identik, dengan kapasitas 3 µF masing-masing, dihubungkan dengan sumber tegangan 12 V dalam suatu rangkaian di atas. Beda potensial antara titik Y dan Z adalah Penyelesaian Untuk bentuk kombinasi seperti di atas, dapat diselesaikan dengan cara mencari nilai kapasitas ekivalennya. Kapasitansi ekivalen merupakan nilai gabungan antara beberapa kapasitor yang disusun seri ataupun paralel atau biasa kita kenal dengan total kapasitansi. Dari soal diatas, pertama-tama kita tentukan kapasitansi ekivalen atau total kapasitansinya dahulu. Muatan pada masing-masing keping kapasitor ekivalen total pada soal diatas adalah Ini adalah besar muatan pada masing-masing keping semula. Beda potensial antara titik Y dan Z yakni pada C3 adalah Jadi, jawabannya adalah 8 Volt. Contoh 3 ika rangkaian dihubungkan dengan menyambungkan saklar S ditutup tentukan Nilai kapasitas penggantiMuatan yang tersimpan dalam rangkaianMuatan yang tersimpan dalam kapasitor ZBeda potensial kapasitor ZEnergi yang tersimpan dalam rangkaian Diketahui Cx = 3F, Cy = 3F, Cz = 9F dan V = 12V Penyelesaian 1. Nilai kapasitas pengganti Cxy = Cx + Cy Cxy = 3 +3 = 9F Jadi nilai kapasitansi kapasitor pengganti sebesar 9F 1/Ctot = 1/Cxu + 1/Cz 1/Ctot = 1/9 + 1/9 = 2/9 Ctot = F Jadi nilai kapasitansi kapasitor pengganti sebesar 2. Muatan yang tersimpan dalam rangkaian Qtot = Ctot V tot = 12 Qtot = 54 C Jadi muatan yang tersimpan dalam rangkaian sebesar 54 C 3. Muatan yang tersimpan dalam kapasitor Z Qxy = Qz = Qtot Qz = 54 C Jadi muatan yang tersimpan dalam kapasitor Z adalah 54 karena pada rangkaian kapasitor Z berada pada rangkaian seri. 4. Beda potensial kapasitor Z Vz = Qz /Cz Vz = 54/9 = 6 V Jadi bedapotensial pada kapasitor Z sebesar 6V 5. Energi yang tersimpan dalam rangkaian W = ½ CV2 W = ½ 62 = 81 J Jadi energi yang tersimpan dalam rangkaian tersebut sebesar 81 J
Suatubenda jatuh bebas dari ketinggian 25 m di atas tanah. (g =10m/s 2) Kecepatan benda pada saat ketinggiannya 5 m dari tanah adalah Dari data di atas yang memiliki kapasitas terkecil adalah kapasitor . a. C5 d. C2. Titik P berada pada jarak a dari kawat l yang dialiri arus listrik I seperti pada gambar I
BerandaLima kapasitor dirangkai seperti gambar Besa...PertanyaanLima kapasitor dirangkai seperti gambar Besar muatan pada kapasitor C 4 adalah ....Lima kapasitor dirangkai seperti gambar Besar muatan pada kapasitor C4 adalah .... 3 coulomb9 coulomb12 coulomb72 coulomb96 coulombPembahasanGambar rangkaian kapasitor pada soal adalah Gambar rangkaian kapasitor pada soal adalah Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!8rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
PembahasanDiketahui : Kapasitor C1 = 2 μF Kapasitor C2 = 4 μF Kapasitor C3 = 6 μF Kapasitor C4 = 5 μF Kapasitor C5 = 10 μF Ditanya : Kapasitas pengganti (C) Jawab : Kapasitor C2 dan C3 terangkai paralel.

- Kapasitor yang dirangkai seri dan paralel akan memiliki perbedaan pada nilai kapasitas dan tegangan kerjanya. Dalam rangkaian elektronika, kapasitor sering dimanfaatkan sebagai penyimpan energi listrik, filter, dan pemblokir arus DC. Kapasitor merupakan salah satu komponen elektronik yang secara fisik memiliki dua keping konduktor dan dipisahkan oleh bahan isolator yang disebut dielektrik. Mengutip dari laman Sumber Belajar Kemdikbud, setiap keping konduktor di kapasitor memiliki muatan berbeda tapi dengan kerapatan yang sama. Lalu, setiap kapasitor mempunyai nilai kapasitansinya sendiri. Kapasitansi adalah besar perbandingan muatan yang tersimpan pada kapasitor dengan beda potensial di kedua keping konduktornya. Kapasitor memiliki tiga jenis yaitu kapasitor kertas, kapasitor elektrolit, dan kapasitor variabel. Kapasitor kertas memiliki kegunaan untuk bahan penyekat di antara kedua pelat. Sementara kapasitor elektrolit memiliki bahan penyekat berupa aluminium oksida. Lalu, kapasitor variabel merupakan kapasitor yang nilai kapasitasnya dapat diubah-ubah dengan penyekat berupa udara. Biasanya kapasitor variabel dipakai sebagai komponen untuk memilih frekuensi gelombang radio penerima. Beberapa manfaat dari penggunaan kapasitor yaitu Komponen penyimpan muatan listrik. Komponen untuk memilih gelombang radio tuning. Menjadi perata arus pada rectifier. Komponen rangkaian starter kendaraan bermotor. Pemadam bunga api pada sistem pengapian mobil. Filter pada catu daya power supply. Rumus Kapasitas Kapasitor Kapasitas atau kapasitansi C diartikan sebagai perbandingan muatan listrik q yang disimpan pada kapasitor, dengan beda potensial V pada kedua keping konduktor. Kaitan ketiga unsur tersebut dapat disatukan dalam rumus sebagai berikut untuk mencari nilai kapasitas sebuah kapasitor C = q/VKeteranganC = kapasitas kapasitor faradq = muatan listrik coulombV = beda potensial volt Jenis-Jenis Rangkaian Kapasitor Mengutip laman Sumber Belajar Kemendikbud, kapasitor dapat dirangkai secara seri dan paralel. Keduanya memberikan efek berbeda pada sebuah rangkaian elektronika. Berikut ini pengaruh nilai kapasitas pada kapasitor dengan dua rangkaian berbeda 1. Kapasitor rangkaian seriPada rangkaian seri, dua kapasitor atau lebih disusun secara seri dengan ujung yang saling disambungkan secara berurutan. Saat disambungkan secara seri, maka kapasitor memiliki nilai kapasitas yang berbanding terbalik dengan nilainya masing-masing. Jika rangkaian cukup banyak maka semakin kecil nilai kapasitasnya. Namun, tegangan kerjanya menjadi lebih besar pada rangkaian seri. Rumus menghitung kapasitas kapasitor pada rangkaian seri adalah Cs = C1 x C2 / C1 + C22. Kapasitor rangkaian paralelRangkaian paralel kapasitor adalah gabungan dua kapasitor atau lebih dengan menyatukan kutub-kutub yang sama. Pada kapasitor yang disambung paralel akan terjadi peningkatan nilai kapasitasnya. Total nilai kapasitasnya merupakan penjumlahan kapasitas dari masing-masing kapasitor. Sementara itu pada rangkaian paralel tidak terjadi perubahan pada tegangan kerjanya. Rumus total nilai kapasitas kapasitor rangkaian paralel yaitu Cp = C1 + C2Baca juga Pengertian Kapasitor, Jenis, Fungsi dan Rumusnya dalam Fisika Rangkuman Materi Fisika Contoh Perpindahan Kalor Secara Konduksi Apa Saja Sifat Fisika dan Sifat Kimia Suatu Benda & Penjelasannya - Pendidikan Kontributor Ilham Choirul AnwarPenulis Ilham Choirul AnwarEditor Maria Ulfa

Dengandemikian energi listrik rangkaian di atas adalah w cv 2 2 10 6 24 2 576 10 6 5 76 10 4 jadi besar energi listrik pada rangkaian tersebut adalah 5 76 10 4 joule c. serta cara menghitung nilainya kapasitor kondensator adalah komponen elektronika yang berfungsi untuk menyimpan muatan listrik dalam waktu yang relatif dengan satuannya Pembahasan soal-soal Ujian Nasional UN SMA-IPA bidang studi Fisika dengan materi pembahasan Kapasitor dan Rangkaian Kapasitor. Soal tentang Kapasitor UN 2009 Kapasitas kapasitor keping sejajar yang diberi muatan dipengaruhi oleh konstanta dielektrik tebal plat luas plat jarak kedua plat Pernyataan yang sesuai adalah …. A. 2 B. 1 dan C. 2 dan 4 D. 2 dan 3 E. 1, 3, dan 4 Rumus yang berlaku untuk kapasitas kapasitor keping sejajar adalah dengan C kapasitas kapasitor ε permitivitas dielektrikum penyekat A luas keping kapasitor d jarak antarkeping Berdasarkan keterangan di atas, pernyataan yang tidak sesuai hanya pernyataan nomor 2. Jadi, pernyataan yang sesuai dengan kapasitor adalah pernyataan nomor 1, 3, dan 4 E. Soal tentang Kapasitor UN 2012 Kapasitor keping sejajar memiliki kapasitas C. Jika jarak kedua keping diubah menjadi ½-nya dan di antara kedua keping disisipi bahan dielektrik dengan konstanta dielektrik 2, kapasitasnya menjadi …. A. ½ C B. ¼ C C. 2 C D. 4C E. 6C Pembahasan Kapasitor keping sejajar memiliki kapasitas C. C1 = C Jarak kedua keping diubah menjadi ½-nya. d2 = ½ d1 Di antara kedua keping disisipi bahan dielektrik dengan konstanta dielektrik 2 konstanta dielektrikum semula dianggap 1. ε1 = 1 ε2 = 2 Pernyataan soal maupun gambar tidak menyebutkan adanya pengubahan pada luas keping. Berarti luas keping konstan. Rumus yang berlaku untuk kapasitor keping sejajar adalah Karena luas keping konstan maka C2 = 4C Jadi, kapasitas kapasitor tersebut menjadi 4C D. Soal Rangkaian Kapasitor UN 2015 Perhatikan gambar rangkaian kapasitor di bawah ini! Nilai muatan total pada rangkaian kapasitor tersebut adalah ... 1 μF = 10−6 F. A. 0,5 μC B. 1 μC C. 2 μC D. 4 μC E. 6 μC Pembahasan Untuk menentukan nilai muatan total, kita cari dulu nilai pengganti kapasitor totalnya. Penghitungan kapasitor pengganti kebalikan dari penghitungan resistor pengganti. 3 kapasitor yang atas adalah identik nilai kapasitasnya sama dan tersusun seri. Sehingga nilai kapasitas penggantinya dapat ditentukan dengan rumus = 1 μF Sedangkan 2 kapasitor yang bawah tersusun paralel dan identik. Nilai kapasitor penggantinya adalah Cp = nC = 2 × 0,5 μF = 1 μF Sementara itu, antara rangkaian kapasitor yang atas Cs dan rangkaian kapasitor yang bawah Cp tersusun paralel. Sehingga kapasitas totalnya adalah C = Cs + Cp = 1 μF + 1 μF = 2μF Dengan demikian, nilai muatan totalnya adalah Q = CV = 2 μF × 3 volt = 6 μC Jadi, muatan total rangkaian kapasitor di atas adalah 6 μC E. Soal Rangkaian Kapasitor UN 2014 Lima kapasitor C1, C2, C3, C4, dan C5 disusun seperti gambar berikut dan dihubungkan dengan sumber tegangan 6 V. Muatan listrik pada kapasitor C1 adalah ... 1 μ = 10−6 A. 9 μC B. 18 μC C. 27 μC D. 36 μC E. 45 μC Pembahasan Besar muatan listrik pada kapasitor C1 merupakan muatan total karena belum bercabang. Sehingga kita harus menentukan terlebih dahulu kapasitas totalnya. Kapasitor C2 dan C3 tersusun seri sehingga kapasitas penggantinya adalah = 2 μF Kapasitor seri tersebut tersusun paralel dengan kapasitor C4. Nilai kapasitas penggantinya adalah Cp = Cs+ C4 = 2 μF + 7 μF = 9 μF Sedangkan antara C1, Cp, dan C5 tersusun seri. Sehingga kapasitas totalnya adalah = 4,5 μF Dengan demikian, muatan listrik yang mengalir pada kapasitor C1 adalah Q = CV = 4,5 μF × 6 V = 27 μC Jadi, besar muatan listrik pada kapasitor C1 adalah 27 μC C. Soal Rangkaian Kapasitor UN 2013 Perhatikan gambar rangkaian kapasitor ini! Besar energi listrik pada kapasitor gabungan adalah ... 1 μF = 10−6 F. A. 1,44 × 10−4 joule B. 2,88 × 10−4 joule C. 5,76 × 10−4 joule D. 7,20 × 10−4 joule E. 8,34 × 10−4 joule Pembahasan Kita tentukan dulu kapasitas totalnya. Kapasitor 7 μF dan 5 μF tersusun paralel, sebut saja Cp1. Cp1 = 7 μF + 5 μF = 12 μF Kapasitor 4 μF dan 2 μF juga tersusun paralel, sebut saja Cp2. Cp2 = 4 μF + 2 μF = 6 μF Sedangkan Cp1, Cp2, dan kapasitor 4 μF yang ada di tengah, tersusun seri. Sehingga kapasitas gabungannya adalah = 2 μF Dengan demikian, energi listrik rangkaian di atas adalah W = ½ CV2 = ½ × 2×10−6 × 242 = 576 × 10−6 = 5,76 × 10−4 Jadi, besar energi listrik pada rangkaian tersebut adalah 5,76 × 10−4 joule C. Pembahasan soal Rangkaian Kapasitor yang lain bisa dilihat di Pembahasan Fisika UN 2014 No. 29 Pembahasan Fisika UN 2015 No. 34 Pembahasan Fisika UN 2016 No. 36 Pembahasan Fisika UN 2019 No. 32 Simak juga, Pembahasan Fisika UN Listrik Dinamis. Dapatkan pembahasan soal dalam file pdf di sini. Demikian, berbagi pengetahuan bersama Kak Ajaz. Silakan bertanya di kolom komentar apabila ada pembahasan yang kurang jelas. Semoga berkah.
perhatikantabel bebrapa kapsitor kepi sejarar berikut ini dua kapasitor yang memiliki nilai kapasitansi yang sama adalah a. C1 dan C5 b. C2 dan C5 c. C3 dan C4 e. gaya gravitasi pada balik lebih besar dari pada kapal; dua muatan titik Q1 dan Q2 diletakkan segaris dan diantara keduannya terletak titik M pada posisi seperti gambar (MINTA WA
Contoh soal fisika kelas 10 soal fisika kelas 10 semester 2 soal fisika kelas 10 semester 2 dan pembahasannya latihan soal fisika kelas 10 contoh soal fisika kelas 9 soal fisika kelas 8 semester 2 Latihan soal Fisika kumpulan soal fisika kelas 10 latihan soal fisika kelas 10 semester 2 kumpulan soal fisika smp dan pembahasannya kumpulan soal fisika kelas 11 soal fisika kelas 7 semester 1 latihan soal fisika kelas 12 semester 1 download soal fisika kelas Soal dan Pembahasan Kapasitor Seri – Kapasitor adalah salah satu komponen pasif yang memiliki peran penting dalam dunia elektronika. Fungsi utama kapasitor adalah sebagai penyimpan muatan listrik. Selain itu kapasitor juga dapat digunakan sebagai filter frekuensi dalam rangkaian RC. Karena kapasitor begitu penting, maka di sini saya akan coba berbagi kepada sahabat semuanya tentang cara menyelesaikan kasus kapasitor ketika dirangkai secara seri, cara menghitung muatan, tegangan dan energi yang tersimpan dalam Sebelum buah kapasitor yang memiliki kapasitas 2µF, 3µF, 6µF tersusun secara seri. Hitunglah berapa besar kapasitas total dari ketiga kapasitor tersebut!Ditanya Kapasitas Total = ... ? Jadi , besar kapasitor total dari ketiga resistor tersebut jika dirangkai secara seri adalah 1 µC Download Sebelum dihapus. Contoh 2 – Soal dan Pembahasan Rangkaian Kapasitor Seri Empat buah kapasitor identik yang memiliki besar masing-masing 16 µF tersusun secara seri. Jika keempat kapasitor tersebut dihubungkan dengan sebuah baterai 12 Volt. Tentukan besar kapasitas kapasitor total dan muatan listrik pada keempat resistor? Pembahasan Diketahui C1 = C2 = C3 = C4 = 16 µF Vs = 12 Volt Ditanya Muatan Listrik Pada Keempat Kapasitor? Menghitung Kapasitas Kapasitor Total Karena Kapasitor Tersusun Secara Seri, maka Rumus Kapasitor Seri adalah Jadi, besarnya kapasitor total adalah 4 µF atau 4 . 10^-6 F Menentukan Muatan Pada Tiap Kapasitor Muatan pada kapasitor yang tersusun secara seri adalah sama dengan muatan total kapasitor Jadi, muatan listrik pada keempat kapasitor adalah 48 µC Baca Juga 5 Contoh Soal dan Pembahasan Arus Listrik Searah DC Contoh 3 – Soal dan Pembahasan Rangkaian Kapasitor Seri Sebuah baterai memiliki tegangan 24 Volt, kemudian baterai ini dihubungkan secara seri dengan 3 kapasitor identik memiliki besar yang sama. Jika muatan total pada rangkaian ini adalah 12 µC. Tentukan besar dari masing-masing kapasitor? Pembahasan Diketahui Vs = 24 Volt C1 = C2 = C3 = C Kapasitor identik Qt = 12 µC Muatan Total Ditanya C = ....? Langkah 1 Menentukan besar kapasitor total rangkaian Langkah 2 Karena resistor tersusun secara seri, maka besar kapasitor total adalah Jadi, besar masing-masing kapasitor adalah 1,5 µF Contoh 4 – Soal dan Pembahasan Rangkaian Kapasitor Seri Dua buah kapasitor C1 = 4 µF dan C2 = 12 µF yang dirangkaikan secara seri dengan sebuah baterai. Jika diketahui muatan total rangkaian adalah 24 µC, tentukan besar tegangan baterai? Pembahasan Diketahui C1 = 4 µF C2 = 12 µF Qt = 24 µC Muatan Total Ditanya Vs = ....? Cara 1 Langkah pertama mencari nilai kapasitor total. Karena kapasitor tersusun secara seri, maka Setelah diperoleh tegangan total, maka dengan mudah kita menghitung tegangan baterai Cara 2 Gunakan Hukum 2 Kirchoff Jadi, besar tegangan baterai adalah 8 Volt Baca Juga Contoh Soal Resistor Seri, Paralel Dan Kombinasi Seri-Paralel Lengkap Dengan Konsep Dan Pembahasan Contoh 5 – Soal dan Pembahasan Rangkaian Kapasitor Seri Lima buah kapasitor C1 = C2 = C3 = C5 = 3 µF dan C4 = 2 µF dan di rangkai seperti gambar di bawah ini. Jika tegangan Sumber Baterai Vs = 3 Volt. Tentukan a. Kapasitas Kapasitor Total b. Energi listrik yang tersimpan dalam rangkaian c. Jumlah muatan total pada kapasitor tersebut d. Jumlah muatan pada masing-masing kapasitor e. Potensial listrik masing-masing kapasitor Pembahasan Diketahui C1 = C2 = C3 = C5 = 3 µF C4 = 2 µF Vs = 3 Volt Ditanya .... ? a. Kapasitas Kapasitor Total Langka1 1 Serikan terlebih dahulu kapasitor C1, C2 dan C3 dan diberi nama Cs1 Setelah diserikan, maka diperoleh rangkaian pengganti Cs1 adalah sebagai berikut Langkah 2 Pada rangkaian di atas terlihat bahwa Cs1 dan C4 tersusun secara paralel. Maka paralelkan terlebih dahulu kapasitor Cs1 dan R4 dan diberi nama Cp Cp = Cs1 + C4 Cp = 1 µF + 2 µF Cp = 3µF Setelah kita paralelkan maka diperoleh rangkaian pengganti sebagai berikut Langkah terakhir Serikan Resistor Cp dan C5 untuk memperoleh kapasitas kapasitor total Jadi, besarnya kapasitas kapasitor total adalah 1,5 µF b. Energi listrik yang tersimpan dalam rangkaian Rumus Energi Listrik yang tersimpan dalam kapasitor Jadi, energi yang tersimpan dalam kapasitor dalam bentuk energi potensial listrik adalah 6,75 . 10^-6 Joule c. Jumlah muatan total pada kapasitor tersebut Rumus hubungan kapasitas kapasitor, muatan dan beda potensial adalah Jadi, jumlah muatan total pada kapasitor tersebut adalah 4,5 µC d. Jumlah muatan pada masing-masing kapasitor Langkah 1 Perhatikan Rangkaian Cp dan C5 di atas. Kedua kapasitor tersebut tersusun secara seri, maka muatan pada Cp dan C5 sama dengan muatan total rangkaian Jadi, diperoleh muatan pada kapasitor C5 adalah 4,5 μC Langkah 2 Perhatikan Rangkaian Cs1 dan C4. Untuk memperoleh muatan pada C4, maka kita harus tahu tegangan pada kedua resistor tersebut. Karena Cs1 dan C4 tersusun secara paralel maka tegangan pada rangkaian paralel adalah sama dengan tegangan sumbernya, yaitu sama dengan tegangan pada kapasitor Cp. Muatan pada kapasitor C4 adalah Jadi, muatan pada C4 adalah 3μC Langkah 3 Perhatikan Kapasitor C1, C2 dan C3 tersusun secara seri dan besarnya sama dengan Cs1, maka muatan pada kapasitor seri adalah sama. Beda potensial pada ketiga resistor sama dengan beda potensial pada Cs1, sehingga diperoleh Jadi, diperoleh muatan pada C1, C2 dan C3 adalah 1,5 μC e. Potensial listrik atau pegangan masing-masing kapasitor Tegangan pada C1, C2, C3 Jadi, tegangan pada resistor C1, C2 dan C3 adalah 0,5 Volt Tegangan Pada C4 Tegangan Pada C4 VC4 telah diperoleh pada poin d langkah 2, yaitu 1,5 Volt Tegangan Pada C5 Jadi, tegangan pada resistor C5 adalah 1,5 Volt Terima Kasih Telah Berkunjung dan Selamat BelajarTag KeywordContoh soal fisika kelas 10 soal fisika kelas 10 semester 2 soal fisika kelas 10 semester 2 dan pembahasannya latihan soal fisika kelas 10 contoh soal fisika kelas 9 soal fisika kelas 8 semester 2 Latihan soal Fisika kumpulan soal fisika kelas 10 latihan soal fisika kelas 10 semester 2 kumpulan soal fisika smp dan pembahasannya kumpulan soal fisika kelas 11 soal fisika kelas 7 semester 1 latihan soal fisika kelas 12 semester 1 download soal fisika kelas 11.

Muatanyang tersimpan pada C4 adalah Q4 = C4.V4 Q4 = 12 µF . (12 Volt) Q4 = 144 µC Jadi, muatan yang tersimpan pada kapasitor C4

Postingan ini membahas contoh soal kapasitor dan pembahasannya atau penyelesaiannya. Kapasitor adalah sebuah piranti yang berguna untuk menyimpan muatan listrik. Kemampuan kapasitor untuk menyimpan muatan bergantung pada kapasitasnya atau kapasitansinya. Semakin besar kapasitas kapasitor berarti semakin besar muatan listrik yang dapat disimpan atau sebaliknya. Rumus kapasitas kapasitor sebagai kapasitas kapasitorKapasitor keping sejajarBesarnya kapasitas kapasitor keping sejajar yang memiliki luas penampang yang sama berbanding lurus dengan luas penampang keping dan berbanding terbalik dengan jarak antara dua keping serta tergantung pada bahan dielektrikum yang diselipkan diantara kedua keping tersebut. Rumus kapasitas kapasitor keping sejajar sebagai = ε Ad KeteranganC = kapasitas kapasitor Fε = εr . ε0 = permitivitas bahanεr = permitivitas relatif bahanε0 = permitivitas ruang hampa 8,85 x 10-12 C2/Nm2A = luas penampang keping sejajar m2d = jarak dua keping mEnergi dalam kapasitorKapasitor yang dihubungkan dengan sumber tegangan akan menyimpan energi listrik yang disebut energi dalam kapasitor. Besarnya energi listrik yang tersimpan dalam kapasitor sama dengan usaha yang dilakukan untuk memindahkan muatan listrik dari sumber tegangan kedalam kapasitor tersebut. Rumus energi dalam kapasitor sebagai = 12 Q . V = 12 C . V2KeteranganE = energi yang tersimpan dalam kapasitor jouleQ = muatan listrik CV = beda potensial VC = kapasitas kapasitor FSusunan kapasitorDua kapasitor atau lebih dapat disusun seri, paralel atau susunan campuran. Rumus susunan seri paralel kapasitor sebagai seri dan paralel kapasitorContoh soal 1Sebuah kapasitor tersusun atas dua lempeng konduktor yang luasnya masing-masing 5 . 10-4 m2 dan terpisah pada jarak 0,8 m. Hitunglah kapasitas kapasitor tersebut apabila diantara kedua lempeng konduktor tersebut terdapatudarabahan dielektrik dengan permitivitas relatif = 80Pembahasan / penyelesaian soalJawaban soal 1 C = εo Ad = 8,85 x 10-12 5 . 10-40,8 C = 55,3125 x 10-16 F Jawaban soal 2 C = ε Ad = εo εr Ad C = 8,85 x 10-12 . 80 5 . 10-40,8 C = 4,425 x 10-16 FContoh soal 2Perhatikan faktor-faktor berikutKonstanta DielektrikTebal pelatLuas pelatJarak kedua pelatYang mempengaruhi besarnya kapasitas keping sejajar jika diberi muatan adalah…A. 1 dan 2 B. 3 dan 4 C. 1, 2, dan 3 D. 1, 2 dan 4 E. 1, 3 dan 4Pembahasan / penyelesaian soalBerdasarkan rumus kapasitas kapasitor keping sejajar yaituC = ε Ad Maka dapat disimpulkan kapasitas kapasitor keping sejajar dipengaruhi oleh konstanta dielektrik, luas pelat dan jarak kedua pelat. Jadi yang benar adalah pernyataan 1, 3, dan 4. Jawaban soal 3Sebuah kapasitor terbentuk dari dua lempeng aluminium yang luas permukaannya 1 m2, dipisahkan oleh selembar parafin yang tebalnya 0,1 mm dan konstanta dielektriknya 2. Jika ε0 = 9 x 10-12 C2/Nm2, kapasitas kapasitor tersebut adalah …A. 0,35 μ FB. 0,25 μF C. 0,18 μFD. 0,1 μF E. 0,05 μFPembahasan / penyelesaian soalC = εo εr Ad C = 9 x 10-12 . 2 1 m20,1 x 10-3 m C = 18 x 10-8 F = 0,18 μFSoal ini jawabannya soal 4 Ebtanas 1997Tabel dibawah ini menunjukkan besaran-besaran pada kapasitor plat dielektrikumLuas kepaingJarak kepingC1KAdC22K2A1/2 dC33KAdC44K1/2 A2dC55K1/2 AdContoh soal kapasitor keping sejajarKapasitor yang memiliki kapasitas terbesar adalah…A. C1 B. C2 C. C3 D. C4 E. C5Pembahasan / penyelesaian soalUntuk menentukan kapasitas kapasitor terbesar tabel diatas kita menggunakan rumus→ C = ε Ad → C1 = K Ad → C2 = 2K 2A1/2 d = 8K Ad → C3 = 2K Ad → C4 = 3K 1/2 A2d = 34 KAd → C5 = 4K 1/2 Ad = 2K Ad Berdasarkan jawaban diatas, kapasitas kapasitor terbesar adalah C2. Jadi soal ini jawabannya adalah soal 5Sebuah kapasitor keping sejajar dengan luas keping 50 cm2, jarak antara keping 3,54 mm. Jika kapasitor tersebut diberi tegangan 500 V, maka besarnya energi kapasitor tersebut adalah …A. 1,6 x 10-6 JB. 2,5 x 10-7 JC. 5,0 x 10-6 JD. 5,0 x 10-7 JE. 5,0 x 10-8 JPembahasan / penyelesaian soalHitung terlebih dahulu kapasitas kapasitor dengan menggunakan rumus dibawah = εo Ad C = 8,85 x 10-12 . 50 x 10-4 m23,54 x 10-3 m C = 12,5 x 10-8 FEnergi kapasitor dihitung dengan rumus dibawah = 1/2 . C. V2W = 1/2 . 12,5 x 10-8 F x 500 V2W = 1,6 x 10-6 JSoal ini jawabannya soal 6 UN 2013Perhatikan rangkaian kapasitor berikut iniContoh soal susunan seri paralel kapasitorEnergi yang tersimpan dalam rangkaian adalah….A. 576 JB. 288 JC. 144 JD. 72 J E. 48 JPembahasan / penyelesaian soalUntuk menjawab soal ini hitung terlebih dahulu konstanta gabungan kapasitor yang dirangkai paralel yaitu CP = 6 F + 3 F + 3 F = 12 F. Selanjutnya hitung kapasitor gabungan 5 kapasitor dengan rumus→ 1Ctotal = 112 + 16 = 14 → 1Ctotal = 1 + 2 + 312 = 612 → Ctotal = 126 = 2 energi yang tersimpan dalam rangkaian sebagai berikut→ Ep = 1/2 . Ctotal V2. → Ep = 1/2 . 2F. 242 = 576 soal ini jawabannya soal 7Perhatikan rangkaian kapasitor berikut kapasitor disusun seri paralelBesar energi listrik dalam rangkaian kapasitor gabungan ini adalah…A. 0,6 x 10-3 J B. 1,2 x 10-3 J C. 1,8 x 10-3 J D. 2,4 x 10-3 JE. 3,0 x 10-3 JPembahasan / penyelesaian soalHitung terlebih dahulu kapasitas gabungan 3 kapasitor yang paling atas dengan rumus→1Cs = 14 + 16 + 112 →1Cs = 3 + 2 + 112 = 612 →Cs = 126 2 hitung 2 kapasitor yang dibawah dengan menggunakan rumus→1Cs = 12 + 12 = 1 →Cs = 1 gabungan 5 kapasitor Ctotal = 2 µF + 1 µF = 3 µF = 3 x 10-6 F. Dengan demikian energi yang tersimpan dalam rangkaian dihitung dengan cara→ Ep = 1/2 . Ctotal . V2. → Ep = 1/2 . 3 x 10-6 . 402. → Ep = 2,4 x 10-3 soal ini jawabannya soal 8Perhatikan gambar kapasitor disusun seriSetelah ujung A dan B dilepas dari sumber tegangan yang beda potensialnya 6 Volt, maka besar muatan pada C2 adalah…A. 90 µC B. 60 µCC. 54 µCD. 45 µCE. 30 µCPembahasan / penyelesaian soalUntuk menentukan besar muatan C2 kita hitung terlebih dahulu kapasitas gabungan ketiga kapasitor yang disusun seri diatas dengan cara→ 1Cs = 130 + 115 + 110 → 1Cs = 1 + 2 + 330 = 630 → Cs = 306 = 5 mikro ketiga kapasitor disusun seri maka muatan pada C1 = C2 = C3 = C. Jadi muatan pada C2 → C = QV → Q = C x V = Cs . x. → Q = 5 µF x 6 Volt = 30 µCJadi soal ini jawabannya soal 9 Un 2016Perhatikan gambar rangkaian kapasitor dibawah soal menentukan muatan kapasitorBesar muatan total pada rangkaian adalah…A. 9 µCB. 25 µCC. 180 µCD. 188 µCE. 200 µCPembahasan / penyelesaian soalUntuk menentukan muatan total pada rangkaia, kita hitung dahulu kapasitas gabungan kelima kapasitor dengan cara dibawah ini.→ 1Cs = 16 + 16 + 16 = 36 → Cs = 63 = 2 µF → Ctotal = 2 + 3 + 4 = 9 demikian muatan pada rangkaian dihitung dengan cara→ Q = Ctotal x V. → Q = 9 µF x 20 V = 180 soal ini jawabannya CContoh soal 10Lima kapasitor C1, C2, C3, C4 dan C5 disusun seperti gambar soal muatan kapasitor rangkaian gabunganMuatan pada C1 adalah…A. 9 µFB. 18 µFC. 27 µFD. 36 µFE. 45 µFPembahasan / penyelesaian soalHitung kapasitas kapasitor rangkaian ditengah→ 1Cs = 13 + 16 = 2 + 16 = 36 → Cs = 63 = 2 µF. → Ctengah = 2 + 7 = 9 µFSelanjutnya kita hitung kapasitas gabungan semua kapasitor dengan cara dibawah ini→ 1Cs = 16 + 19 + 118 = 3 + 2 + 118 → Ctotal = 186 = 3 muatan pada C1 = Q1 = Ctotal x V = 3 x 6 = 18 µF. Jadi jawabannya soal 115 kapasitor identik masing-masing 20 µF disusun seperti gambar dihubungkan dengan sumber tegangan 6 kapasitor disusun campuran seri paralelMuatan total yang tersimpan pada kapasitor C5 adalah…A. 12 µFB. 24 µFC. 60 µFD. 120 µFE. 600 µFPembahasan / penyelesaian soalPembahasan contoh soal susunan kapasitor nomor 11Soal ini jawabannya soal 12Perhatikan rangkaian dibawah soal rangkaian kapasitor nomor 12Besar muatan pada C5 adalah…A. 36 CB. 24 CC. 12 C D. 6 C E. 4 CPembahasan / penyelesaian soalPembahasan soal rangkaian kapasitorSoal ini jawabannya B.

Ketikategangan C4 sampai pada level tegangan 70V maka lampu neon akan konduksi (karakteristik lampu neon kecil- DS1). Ketika muatan dalam kapasitor tersebut kosong maka impedansi lampu xenon akan naik kembali dan kapasitor bank akan diisi kembali. pada tegangan listrik mulai dari 6 sampai 9 V, adalah kurang dari 120 μA. Ketika LED Kapasitansiadalah besar perbandingan muatan yang tersimpan Padasusunan seri, muatan pada tiap kapasitor bernilai sama dengan muatan pada kapasitor pengganti, beda potensial pengganti sama dengan jumlah beda potensial pada tiap ujung kapasitor, dan untuk kapasitor pengganti, silakan lihat ringkasan matematis di bawah ini. q s = q 1 = q 2 = = q n q_s=q_1=q_2=\ldots =q_n q s = q 1 = q 2 = = q n .
  • 4hsak18702.pages.dev/289
  • 4hsak18702.pages.dev/664
  • 4hsak18702.pages.dev/446
  • 4hsak18702.pages.dev/858
  • 4hsak18702.pages.dev/440
  • 4hsak18702.pages.dev/10
  • 4hsak18702.pages.dev/364
  • 4hsak18702.pages.dev/916
  • 4hsak18702.pages.dev/233
  • 4hsak18702.pages.dev/580
  • 4hsak18702.pages.dev/227
  • 4hsak18702.pages.dev/591
  • 4hsak18702.pages.dev/162
  • 4hsak18702.pages.dev/405
  • 4hsak18702.pages.dev/406
  • besar muatan listrik pada kapasitor c4 adalah